15 research outputs found

    The trouble with twisting (2,0) theory

    Get PDF
    We consider a twisted version of the abelian (2,0)(2,0) theory placed upon a Lorenzian six-manifold with a product structure, M6=C×M4M_6=C \times M_4 . This is done by an investigation of the free tensor multiplet on the level of equations of motion, where the problem of its formulation in Euclidean signature is circumvented by letting the time-like direction lie in the two-manifold CC and performing a topological twist along M4M_4 alone. A compactification on CC is shown to be necessary to enable the possibility of finding a topological field theory. The hypothetical twist along a Euclidean CC is argued to amount to the correct choice of linear combination of the two supercharges scalar on M4M_4. This procedure is expected and conjectured to result in a topological field theory, but we arrive at the surprising conclusion that this twisted theory contains no QQ-exact and covariantly conserved stress tensor unless M4M_4 has vanishing curvature. This is to our knowledge a phenomenon which has not been observed before in topological field theories. In the literature, the setup of the twisting used here has been suggested as the origin of the conjectured AGT-correspondence, and our hope is that this work may somehow contribute to the understanding of it.Comment: 25 pages, v2: Some further clarifications including an extended discussion on the relation to other topological twistings. References adde

    Off-shell structure of twisted (2,0) theory

    Get PDF
    A QQ-exact off-shell action is constructed for twisted abelian (2,0) theory on a Lorentzian six-manifold of the form M1,5=C×M4M_{1,5} = C\times M_4, where CC is a flat two-manifold and M4M_4 is a general Euclidean four-manifold. The properties of this formulation, which is obtained by introducing two auxiliary fields, can be summarised by a commutative diagram where the Lagrangian and its stress-tensor arise from the QQ-variation of two fermionic quantities VV and λμν\lambda^{\mu\nu}. This completes and extends the analysis in [arXiv:1311.3300].Comment: 15 pages, 2 figure

    Geometric deep learning and equivariant neural networks

    Get PDF
    We survey the mathematical foundations of geometric deep learning, focusing on group equivariant and gauge equivariant neural networks. We develop gauge equivariant convolutional neural networks on arbitrary manifolds M using principal bundles with structure group K and equivariant maps between sections of associated vector bundles. We also discuss group equivariant neural networks for homogeneous spaces M= G/ K , which are instead equivariant with respect to the global symmetry G on M . Group equivariant layers can be interpreted as intertwiners between induced representations of G, and we show their relation to gauge equivariant convolutional layers. We analyze several applications of this formalism, including semantic segmentation and object detection networks. We also discuss the case of spherical networks in great detail, corresponding to the case M= S2= SO (3) / SO (2) . Here we emphasize the use of Fourier analysis involving Wigner matrices, spherical harmonics and Clebsch–Gordan coefficients for G= SO (3) , illustrating the power of representation theory for deep learning

    HEAL-SWIN: A Vision Transformer On The Sphere

    Full text link
    High-resolution wide-angle fisheye images are becoming more and more important for robotics applications such as autonomous driving. However, using ordinary convolutional neural networks or vision transformers on this data is problematic due to projection and distortion losses introduced when projecting to a rectangular grid on the plane. We introduce the HEAL-SWIN transformer, which combines the highly uniform Hierarchical Equal Area iso-Latitude Pixelation (HEALPix) grid used in astrophysics and cosmology with the Hierarchical Shifted-Window (SWIN) transformer to yield an efficient and flexible model capable of training on high-resolution, distortion-free spherical data. In HEAL-SWIN, the nested structure of the HEALPix grid is used to perform the patching and windowing operations of the SWIN transformer, resulting in a one-dimensional representation of the spherical data with minimal computational overhead. We demonstrate the superior performance of our model for semantic segmentation and depth regression tasks on both synthetic and real automotive datasets. Our code is available at https://github.com/JanEGerken/HEAL-SWIN.Comment: Main body: 10 pages, 7 figures. Appendices: 4 pages, 2 figure

    (2,0) theory on circle fibrations

    Full text link
    We consider (2,0) theory on a manifold M_6 that is a fibration of a spatial S^1 over some five-dimensional base manifold M_5. Initially, we study the free (2,0) tensor multiplet which can be described in terms of classical equations of motion in six dimensions. Given a metric on M_6 the low energy effective theory obtained through dimensional reduction on the circle is a Maxwell theory on M_5. The parameters describing the local geometry of the fibration are interpreted respectively as the metric on M_5, a non-dynamical U(1) gauge field and the coupling strength of the resulting low energy Maxwell theory. We derive the general form of the action of the Maxwell theory by integrating the reduced equations of motion, and consider the symmetries of this theory originating from the superconformal symmetry in six dimensions. Subsequently, we consider a non-abelian generalization of the Maxwell theory on M_5. Completing the theory with Yukawa and phi^4 terms, and suitably modifying the supersymmetry transformations, we obtain a supersymmetric Yang-Mills theory which includes terms related to the geometry of the fibration.Comment: 24 pages, v2 References added, typos correcte

    Fast convolutional neural networks on FPGAs with hls4ml

    Get PDF
    We introduce an automated tool for deploying ultra low-latency, low-power deep neural networks with convolutional layers on FPGAs. By extending the hls4ml library, we demonstrate an inference latency of 5 μ5\,\mus using convolutional architectures, targeting microsecond latency applications like those at the CERN Large Hadron Collider. Considering benchmark models trained on the Street View House Numbers Dataset, we demonstrate various methods for model compression in order to fit the computational constraints of a typical FPGA device used in trigger and data acquisition systems of particle detectors. In particular, we discuss pruning and quantization-aware training, and demonstrate how resource utilization can be significantly reduced with little to no loss in model accuracy. We show that the FPGA critical resource consumption can be reduced by 97% with zero loss in model accuracy, and by 99% when tolerating a 6% accuracy degradation.Comment: 18 pages, 18 figures, 4 table
    corecore